Valuing Non-Interest-Bearing Liabilities Growth Rate is Time-Dependent

Gary Schurman MBE, CFA

May, 2025

In this white paper we will extend the model in the previous white paper (notional growth rate is constant) and assume that the notional growth rate is time-dependent (i.e. mean-reverting). To that end we will work through the following hypothetical problem...

Our Hypothetical Problem

We are currently standing at time zero and are tasked with determining the market value of a ABC Company's non-interest-bearing liabilities. Our go-forward model assumptions are...

Description	Value
Notional value at time zero (\$)	1,000,000
Annual short-term notional value growth rate $(\%)$	18.50
Annual long-term notional value growth rate $(\%)$	3.50
Annual investment yield (%)	4.75
Annual risk-adjusted discount rate $(\%)$	9.50
Income tax rate $(\%)$	15.50
Ratio of NIBL to notional value $(\%)$	20.00
Transition half-life in years $(\#)$	4.25

Note: Notional value is defined as tangible assets for banks and annualized revenue for non-banks.

Question 1: What is the book value of non-interest-bearing liabilities at time zero?

Question 2: What is the market value of non-interest-bearing liabilities at time zero?

Building Our Model

We will define the variable λ to be the rate of mean reversion, which is the rate at which the short-term rate transitions to the long-term rate over time. The equation for the rate of mean reversion is... [1]

$$\lambda = -\frac{\ln(0.50)}{T} \quad \dots \text{ where...} \quad T = \text{Transition half-life in years} \tag{1}$$

Using Equation (1) above and our go-forward model assumptions above, the rate of mean reversion for our problem is...

$$\lambda = -\frac{\ln(0.50)}{1.25} = 0.1631\tag{2}$$

We will define the variable ω_S to be the continuous-time, short-term notional growth rate, the variable ω_L to be the continuous-time, long-term notional growth rate, and the variable ω_t to be the continuous-time notional growth rate at time t. Using Equation (1) above, the equation for the notional growth rate at time t is...

$$\omega_t = \omega_L + \Delta(\omega) \operatorname{Exp}\left\{-\lambda t\right\} \quad \dots \text{ where} \quad \dots \quad \Delta(\omega) = \omega_S - \omega_L \tag{3}$$

We will define the variable Γ_t to be the cumulative notional growth rate over the time interval [0, t]. Using Equation (3) above, the equation for the cumulative notional growth rate at time t is... [1]

$$\Gamma_t = \int_0^t \omega_s \,\delta s = \frac{\Delta(\omega)}{\lambda} + \omega_L \,t - \frac{\Delta(\omega)}{\lambda} \operatorname{Exp}\left\{-\lambda \,t\right\} \tag{4}$$

We will define the variable N_t to be notional value at time t. Notional value is defined as tangible assets for banks and annualized operating revenue for non-banks. Using Equation (4) above, the equation for notional value at time t is...

$$N_t = N_0 \operatorname{Exp}\left\{\Gamma_t\right\} = N_0 \operatorname{Exp}\left\{\frac{\Delta(\omega)}{\lambda} + \omega_L t - \frac{\Delta(\omega)}{\lambda} \operatorname{Exp}\left\{-\lambda t\right\}\right\}$$
(5)

We will define the variable L_t to be non-interest-bearing liabilities at time t and the variable η to be the ratio of non-interest-bearing liabilities to notional value. Using Equation (5) above, the equation for non-interest-bearing liabilities at time t is...

$$L_t = \eta N_t = \eta N_0 \operatorname{Exp}\left\{\frac{\Delta(\omega)}{\lambda} + \omega_L t - \frac{\Delta(\omega)}{\lambda} \operatorname{Exp}\left\{-\lambda t\right\}\right\}$$
(6)

We will define the variable I_t to be annualized after-tax investment income at time t, the variable α to be the continuous-time, pre-tax investment yield, and the variable τ to be the income tax rate. Using Equation (6) above, the equation for annualized after-tax investment income at time t is...

$$I_t = \alpha \left(1 - \tau\right) L_t = \alpha \left(1 - \tau\right) \eta N_0 \operatorname{Exp}\left\{\frac{\Delta(\omega)}{\lambda} + \omega_L t - \frac{\Delta(\omega)}{\lambda} \operatorname{Exp}\left\{-\lambda t\right\}\right\}$$
(7)

We will define the variable $I_{m,n}$ to be after-tax investment income recognized over the time interval [m, n]. Using Equation (7) above, the equation for cumulative after-tax investment income is...

$$I_{m,n} = \int_{m}^{n} I_t \,\delta t = \alpha \left(1 - \tau\right) \eta \, N_0 \int_{m}^{n} \operatorname{Exp}\left\{\frac{\Delta(\omega)}{\lambda} + \omega_L \,t - \frac{\Delta(\omega)}{\lambda} \operatorname{Exp}\left\{-\lambda \,t\right\}\right\} \delta t \tag{8}$$

Note that there is no closed-form solution to Equation (8) above and therefore must be solved via numerical integration.

We will define the variable V_0 to be the present value at time zero of after-tax investment income over the time interval $[0, \infty]$ and the variable κ to be the continuous-time, risk-adjusted discount rate. Using Equation (8) above, the equation for the present value of after-tax investment income is...

$$V_0 = \int_0^\infty I_t \operatorname{Exp}\left\{-\kappa t\right\} \delta t = \alpha \left(1-\tau\right) \eta N_0 \int_0^\infty \operatorname{Exp}\left\{\frac{\Delta(\omega)}{\lambda} + \left(\omega_L - \kappa\right) t - \frac{\Delta(\omega)}{\lambda} \operatorname{Exp}\left\{-\lambda t\right\}\right\} \delta t$$
(9)

Note that the constraint in Equation (9) above is that $\omega_L < \kappa$.

Answers To Our Hypothetical Problem

Using the go-forward model assumptions above, the parameters to our problem are...

Symbol	Equation	Value
N_0	Equation (5)	1,000,000
α	$\ln(1+0.0475)$	0.0464
κ	$\ln(1 + 0.0950)$	0.0908
ω_S	$\ln(1 + 0.1850)$	0.1697
ω_L	$\ln(1 + 0.0350)$	0.0344
$\Delta(\omega)$	$\omega_S - \omega_L$	0.1353
$\hat{\lambda}$	Equation (2)	0.1631
η	NĂ	0.2000
au	NA	0.1550

Question 1: What is the book value of non-interest-bearing liabilities at time zero?

Using Equation (6) above and the go-forward model assumptions above, the answer to the question is...

Book value at time zero =
$$L_0 = 0.20 \times 1,000,000 = 200,000$$
 (10)

Question 2: What is the market value of non-interest-bearing liabilities at time zero?

Using Equation (9) above and our go-forward model parameters above, the equation for the market value of non-interest-bearing liabilities at time zero is...

$$V_0 = 0.0416 \times (1 - 0.1550) \times 0.2000 \times 1,000,000 \int_0^\infty \exp\left\{\frac{0.1353}{0.1631} + (0.0344 - 0.0908) \times t - \frac{0.1353}{0.1631} \times \exp\left\{-0.1631 \times t\right\}\right\} \delta t$$
(11)

Using the white paper **Solving The Exponential Integral - Excel VBA Toolbox** [4], the solution to Equation (11) above is...

$$V_{0,\infty} = 0.0464 \times (1 - 0.1550) \times 0.20 \times 1,000,000 \times 33.7381 = 264,597$$
(12)

Note that the solution to the exponential integral in Equation (11) above is... [4]

Integral value =
$$\int_{0}^{\infty} \exp\left\{\frac{0.1353}{0.1631} + (0.0344 - 0.0908) \times t - \frac{0.1353}{0.1631} \times \exp\left\{-0.1631 \times t\right\}\right\} \delta t$$

= EXPINT(1, 0.0908, 0.1631, 0.1697, 0.0344, 0,0) = 33.7381 (13)

References

[1] Gary Schurman, The Stochastic, Mean-Reverting Short Rate, May, 2020

[2] Gary Schurman, Incomplete Gamma Function - Base Equation For A Mean-Reverting Process, November, 2017

- [3] Gary Schurman, Non-Interest-Bearing Liabilities Growth Rate is Constant, March, 2025
- [4] Gary Schurman, Solving The Exponential Integral Excel VBA Toolbox, December, 2024