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In this white paper we will extend the model in the previous white paper (notional growth rate is constant) and
assume that the notional growth rate is time-dependent (i.e. mean-reverting). To that end we will work through
the following hypothetical problem. . .

Our Hypothetical Problem

We are currently standing at time zero and are tasked with determining the market value of a ABC Company’s
non-interest-bearing liabilities. Our go-forward model assumptions are...

Description Value

Notional value at time zero ($) 1,000,000
Annual short-term notional value growth rate (%) 18.50
Annual long-term notional value growth rate (%) 3.50
Annual investment yield (%) 4.75
Annual risk-adjusted discount rate (%) 9.50
Income tax rate (%) 15.50
Ratio of NIBL to notional value (%) 20.00
Transition half-life in years (#) 4.25

Note: Notional value is defined as tangible assets for banks and annualized revenue for non-banks.

Question 1: What is the book value of non-interest-bearing liabilities at time zero?

Question 2: What is the market value of non-interest-bearing liabilities at time zero?

Building Our Model

We will define the variable λ to be the rate of mean reversion, which is the rate at which the short-term rate
transitions to the long-term rate over time. The equation for the rate of mean reversion is... [1]

λ = − ln(0.50)

T
...where... T = Transition half-life in years (1)

Using Equation (1) above and our go-forward model assumptions above, the rate of mean reversion for our problem
is...

λ = − ln(0.50)

1.25
= 0.1631 (2)

We will define the variable ωS to be the continuous-time, short-term notional growth rate, the variable ωL to be
the continuous-time, long-term notional growth rate, and the variable ωt to be the continuous-time notional growth
rate at time t. Using Equation (1) above, the equation for the notional growth rate at time t is...

ωt = ωL +∆(ω) Exp

{
− λ t

}
...where... ∆(ω) = ωS − ωL (3)
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We will define the variable Γt to be the cumulative notional growth rate over the time interval [0, t]. Using Equation
(3) above, the equation for the cumulative notional growth rate at time t is... [1]

Γt =

t∫
0

ωs δs =
∆(ω)

λ
+ ωL t− ∆(ω)

λ
Exp

{
− λ t

}
(4)

We will define the variable Nt to be notional value at time t. Notional value is defined as tangible assets for banks
and annualized operating revenue for non-banks. Using Equation (4) above, the equation for notional value at time
t is...

Nt = N0 Exp

{
Γt

}
= N0 Exp

{
∆(ω)

λ
+ ωL t− ∆(ω)

λ
Exp

{
− λ t

}}
(5)

We will define the variable Lt to be non-interest-bearing liabilities at time t and the variable η to be the ratio of
non-interest-bearing liabilities to notional value. Using Equation (5) above, the equation for non-interest-bearing
liabilities at time t is...

Lt = η Nt = η N0 Exp

{
∆(ω)

λ
+ ωL t− ∆(ω)

λ
Exp

{
− λ t

}}
(6)

We will define the variable It to be annualized after-tax investment income at time t, the variable α to be the
continuous-time, pre-tax investment yield, and the variable τ to be the income tax rate. Using Equation (6) above,
the equation for annualized after-tax investment income at time t is...

It = α (1− τ)Lt = α (1− τ) η N0 Exp

{
∆(ω)

λ
+ ωL t− ∆(ω)

λ
Exp

{
− λ t

}}
(7)

We will define the variable Im,n to be after-tax investment income recognized over the time interval [m,n]. Using
Equation (7) above, the equation for cumulative after-tax investment income is...

Im,n =

n∫
m

It δt = α (1− τ) η N0

n∫
m

Exp

{
∆(ω)

λ
+ ωL t− ∆(ω)

λ
Exp

{
− λ t

}}
δt (8)

Note that there is no closed-form solution to Equation (8) above and therefore must be solved via numerical inte-
gration.

We will define the variable V0 to be the present value at time zero of after-tax investment income over the time
interval [0,∞] and the variable κ to be the continuous-time, risk-adjusted discount rate. Using Equation (8) above,
the equation for the present value of after-tax investment income is...

V0 =

∞∫
0

It Exp

{
− κ t

}
δt = α (1− τ) η N0

∞∫
0

Exp

{
∆(ω)

λ
+ (ωL − κ) t− ∆(ω)

λ
Exp

{
− λ t

}}
δt (9)

Note that the constraint in Equation (9) above is that ωL < κ.

Answers To Our Hypothetical Problem

Using the go-forward model assumptions above, the parameters to our problem are...

Symbol Equation Value

N0 Equation (5) 1,000,000
α ln(1 + 0.0475) 0.0464
κ ln(1 + 0.0950) 0.0908
ωS ln(1 + 0.1850) 0.1697
ωL ln(1 + 0.0350) 0.0344

∆(ω) ωS − ωL 0.1353
λ Equation (2) 0.1631
η NA 0.2000
τ NA 0.1550
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Question 1: What is the book value of non-interest-bearing liabilities at time zero?

Using Equation (6) above and the go-forward model assumptions above, the answer to the question is...

Book value at time zero = L0 = 0.20× 1, 000, 000 = 200, 000 (10)

Question 2: What is the market value of non-interest-bearing liabilities at time zero?

Using Equation (9) above and our go-forward model parameters above, the equation for the market value of
non-interest-bearing liabilities at time zero is...

V0 = 0.0416×(1−0.1550)×0.2000×1, 000, 000

∞∫
0

Exp

{
0.1353

0.1631
+(0.0344−0.0908)×t−0.1353

0.1631
×Exp

{
−0.1631×t

}}
δt

(11)
Using the white paper Solving The Exponential Integral - Excel VBA Toolbox [4], the solution to Equation
(11) above is...

V0,∞ = 0.0464× (1− 0.1550)× 0.20× 1, 000, 000× 33.7381 = 264, 597 (12)

Note that the solution to the exponential integral in Equation (11) above is... [4]

Integral value =

∞∫
0

Exp

{
0.1353

0.1631
+ (0.0344− 0.0908)× t− 0.1353

0.1631
× Exp

{
− 0.1631× t

}}
δt

= EXPINT(1, 0.0908, 0.1631, 0.1697, 0.0344, 0,0) = 33.7381 (13)
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